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Abstract. Let F be a foliation on a connected manifold M and denote by T'F
the tangent bundle to F and ¥V = T'M/TF its normal bundle. We say that F is

developable if there exists a normal I'-covering wm : M — M such that the pull-
back F of F by 7 is a locally trivial fibration D : M — W on which T acts by
automorphisms (and then on W). The fibre of D is denoted L.

Suppose M compact. We prove: i) if Hl(i) = 0, the space Hx(M,V) of
infinitesimal deformations of (M, F) is naturally identified to the first cohomology space
HY(T,X(W)) of the discrete group I" with values in the T-module X (V) of smooth

vector fields on W; ii) if L has trivial cohomology, the foliated cohomology H (M, V)
of (M, F) with values in V is isomorphic to the cohomology H*(I', X(W)) of I with
values in X (V). Some examples and explicit computations are given.

0. Introduction

The study of deformations of foliations uses various mathematical tools, for instance
that of differential geometry, global analysis, algebraic topology... They fall within
the more general framework of deformation theory of geometric structures which was
initiated by the works of Kodaira and Spencer [KS] in the 50’s on the variation of
complex structures. Even if there is still work to be done, Kuranishi [Kur] has finalized
the subject by showing the existence of a wersal space through which transits any
deformation of a given complex structure on a compact manifold. This result was
a great advance in the development of complex geometry. Adapting these methods,
Girbau, Haefliger and Sundararaman [GHS] established, in a similar way, the existence
of a versal space for the deformations of transversely holomorphic foliations.
Unfortunately, the tools used in the complex case were not completely available
for studying the deformations of real foliations. Moreover, at that time, the theory
really lacked non-trivial examples. The first one which is differentiably stable and
with an interesting dynamic (for instance all its leaves are dense) was given in [GS] by
Ghys and Sergiescu in 1980. Their constructions and proofs are based on qualitative
properties of codimension one foliations on 3-manifolds. More or less around the same
time, Hamilton gave a strong criterion for deciding whether a foliation on a compact
manifold is differentiably stable. But the paper [Ham] containing this result (always
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highly requested by specialists in these matters) has never been published, probably
by voluntary decision of the author who had as examples to which he could apply its
criterion only Riemannian foliations with compact leaves. Later on, using this criterion,
in [EN] the authors constructed a class of C'*°-stable foliations (of arbitrary dimension
and codimension) which includes the example in [GS].

A powerful tool in the study of the deformations of a foliation (M, F) and which
appears to be an essential ingredient in the Hamilton criterion is the foliated cohomology
H%(M,V) with values in the normal bundle V of F. This is the reason why it has since
been the subject of works by many authors.

In this paper, we explicitly describe the foliated cohomology with values in the
normal bundle for developable foliations and relate it, by spectral sequences, to the
cohomology of a discrete group with coefficients in the Fréchet space of C'°°-vector
fields over a manifold naturally associated to the foliation. This makes possible to
transpose its calculation, usually carried out by differential forms, to that using different
methods and which sometimes prove to be more effective. In particular, this gives a
way to compute the space Hx(M,V) which contains the infinitesimal deformations of
F. Explicit examples are given showing concretely the interest of this point of view.

Of course, the category of developable foliations is particular but it includes enough
examples, for instance foliations obtained by suspension of groups of diffeomorphisms
and transversely homogeneous foliations. For these latter foliations, a fairly specific
study of their deformations accompanied by those of their transverse homogeneous
structures was carried out in [EGN].

All the manifolds and the different geometric structures (functions, vector fields,
differential forms...) are assumed to be of class C*.

The following notion appears frequently in this article. We will fix once and for
all our terminology that designates it (even though it may not be the usual one).

Let M be a manifold and I" a countable discrete group. A normal I'-covering of

M is given by a manifold M with a free and proper action of I' by diffeomorphisms
such that M is the quotient M /T.

1. Foliations

Let M be a connected manifold of dimension m + n. A foliation of codimension n
on M is a geometric structure such that around each point one can cut a small open
neighborhood which looks like the product R” x R™ where the second factor is equipped
with the discrete topology. More precisely we have the following:

1.1. Definition. Let M be a manifold of dimension m—+n. A codimension n foliation
F on M is given by an open cover U = {U;};cr and for each i, a diffeomorphism
@i : R™T" — U,; such that, on each non empty intersection U; NU;, the coordinate
change:

(1) ot owi (z,y) € 0] {(UNU;) — (2',y) € ; 1 (Ui N U)
has the form ' = p;;(x,y) and y' = v;;(y).
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The manifold M is decomposed into connected submanifolds of dimension m. Each
of them is called a leaf of F. A subset U of M is saturated for F if it is a union of
leaves: if © € U then the leaf passing through x is contained in U.

Coordinate patches (U;, ;) satisfying conditions of definition 1.1 are said to be
distinguished for the foliation F.

The following (second) definition is more appropriate for introducing the notion
of transverse structure, which is crucial in the theory of foliations.

Let F be a codimension n foliation on M defined by a maximal atlas {(U;, p;) }bicr
like in definition 1.1. Let 7 : R™*T"? = R™ x R® — R" be the second projection. Then
the map f; : U; — R™ (where f; = 7o goi_l) is a submersion. On U; NU; # () we have
fi = iz o fi. The fibres of the submersion f; are the F-plaques of U;. The submersions
fi and the local diffeomorphisms «;; of R give a complete characterization of F.

1.2. Definition. A codimension n foliation on M is given by an open cover (U;)cr,
submersions f; : Uy — T over a n dimensional transverse manifold T and, for any
non empty intersection U; N Uj, a diffeomorphism:

Yij - fz(Uz ﬂUj) cT — fJ(UZ ﬂUj) cT

satisfying f;(z) = vij o fi(2) for z € U;NU;. We say that {U;, fi,T,7i;} is o foliated
cocycle defining F.

The foliation F is said to be transversely orientable if the transverse manifold T
can be given an orientation preserved by all the local diffeomorphisms ~;;.

1.3. Morphisms of foliations

Let M and M’ be two manifolds endowed respectively with foliations F and F’. A
map [ : M — M’ will be called foliated or a morphism between F and F' if, for every
leaf L of F, f(L) is contained in a leaf of F’; we say that f is an isomorphism if, in
addition, f is a diffeomorphism whose restriction to any leaf L € F is a diffeomorphism

on the leaf L' = f(L) € F'.

Suppose now that f is a diffeomorphism of M. Then for every leaf L € F, f(L) is
a leaf of a codimension n foliation F’ on M; we say that F’ is the image of F by the
diffeomorphism f and we write F = f*(F’). Two foliations F and F’ on M are said to
be C"-conjugated (topologically if r = 0, differentiably if r = oo and analytically in the
case r = w) if there exists a C"-homeomorphism f : M — M such that f*(F') = F.

The set of C'*°-diffeomorphisms of M which preserve the foliation F is a group
denoted Diff(M, F).

The following definition introduces a very important property of a foliation. It
describes a large part of its geometric structure.

1.4. Definition. Let M be a manifold and F a codimension n foliation on M defined
by a foliated cocycle {U;, f;,T,vij}. A transverse structure to F is a geometric
structure on T' invariant by the local diffeomorphisms ;.

Examples of such structures will be given later.

3



2. Basic elements

Let us fix some notations. Let F be a codimension n foliation on M. We denote by
TF the tangent bundle to F and V its normal bundle that is the quotient TM /T F.

2.1. Basic forms and basic vector fields

We denote by X(F) the space of sections of T'F (elements of X(F) are vector fields
X € X(M) tangent to F).

A differential form a € Q7(M) is said to be basic if it satisfies ixa = 0 and
Lxa =0 for every X € X(F). (Here ix and Ly denote respectively the inner product
and the Lie derivative with respect to the vector field X.) For a function f : M — R,
these conditions are equivalent to X - f = 0 for every X € X(F) i.e. f is constant
on the leaves of F; we denote by €} (M) the space of basic forms of degree r on the
foliated manifold (M, F); this is a module over the algebra Cy° (M) of basic functions.

A vector field Y € X(M) is said to be foliated, if for every X € X(F), the bracket
[X,Y] € X(F). We see easily that the set X(M,F) of foliated vector fields is a Lie
algebra in which X(F) is an ideal. The quotient Xy(M) = X(M, F)/X(F) is called the
Lie algebra of basic (or transverse) vector fields on the foliated manifold (M, F). Also,
it has a module structure over the algebra Cp°(M).

2.2. Foliated vector bundles and basic sections

1. Let 7 : E — M be a vector bundle of rank N defined by a cocycle {U;, gi; }
where {U;} is an open cover of M and the g;; are the (continuous) transition functions
gij Uy NU; — GL(V, R) satisfying the cocycle condition:

(2) 9ij(2) = gix(2) - grj(2) for z € U;NU; NUj,.

We say that E is foliated if the functions g;; are basic on U; N U;. For such vector
bundle, the foliation F can be lifted to a same dimension foliation g on F such that
the projection 7 sends leaves of Fg into leaves of F.

Let (M, F) and (M’',F’) be two foliations and 7 : £ — M and 7' : B/ — M’
foliated vector bundles. A morphism of vector bundles £ — E’ is a foliated morphism
if it sends leaves of Fg into leaves of Fp,. Of course, it induces a foliated morphism
(M, F) — (M',F"). Foliated vector bundles and their morphisms form a category.

2. The fundamental example of a foliated bundle over a foliated manifold (M, F)
is the normal bundle V = TM/TF (by definition of the foliation F). The bundles
naturally associated to it, for instance its dual V*, all of its exterior and symmetric
powers A*V* and S*V*... are foliated.

3. Recall that a section of E is a C*°-map o : M — E such that 7oa =idy;. If
(U, (1, Tm, Y1, »Yn)) is a distinguished coordinates system on which E is trivial,
« is represented by a C*°-function o : U — RY. We say that « is basic, if the function
ay is basic, that is, it depends only on the transverse coordinates (y1,--+,%,). The
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space Cp°(E) of basic sections of E is a module over the algebra A = Cy°(M) of basic
functions. For more details on these foliated objects see [Ek3].

For a foliated vector bundle E we denote by &, the sheaf of germs of its basic
sections. In general &, is not fine (see subsection 4.2) and then it gives rise to a non
trivial cohomology H*(M, &,). We shall see in section 4 how to give a fine resolution
of this sheaf and compute H*(M, &) by using special differential forms on M.

3. Developable foliations

3.1. Foliated covering

1. Let M be a connected manifold of dimension m+n endowed with a codimension
n foliation F. Suppose that a discrete group I' acts on M freely and properly by
diffeomorphisms preserving F. The quotient M = M /T is a manifold of dimension
m + n and the canonical projection 7 : M — M is a normal I'-covering. Moreover,
because elements of I" preserve F , this foliation induces on M a codimension n foliation
F for which 7 is a morphism of foliations. We say that = : (]\/4\, .7?) — (M, F) is a
foliated normal T'-covering.

2. Conversely, let M be a connected manifold of dimension m +n equipped with a
codimension n foliation F. For any normal I'-covering MsM=M /T, the pull-back
F = 7*(F) of F is a codimension n foliation such that = : (M,F) — (M, F) is a
foliated normal I'-covering.

This enables us to give the definition of the category of foliations we will be
interested on in all this paper.

3.2. Definition. A codimension n foliation F on a connected manifold M 1is said
developable if there exists a normal I'-covering M =5 M such that the leaves of the
pull-backj-: of F are the fibres of a locally trivial fibration D : M — W. This fibration
18 called the developing map of F.

The group I' acts on M by automorphisms of F and then by diffeomorphisms on
W. For any such automorphism ~ € I', we denote by 7 the induced diffeomorphism on

W we have a commutative diagram:

M X M
(3) D ~ D
w5 oW
From now on, the examples we will give in this section are all developable foliations.

3.3. Transversely homogeneous foliations

Let M be a manifold of dimension m+n endowed with a codimension n foliation F
defined by a foliated cocycle {U;, fi, T, ~i;}. We say that F is transversely homogeneous
if T" is a homogeneous space G/ H and the diffeomorphisms ;; are induced by restriction
of left translations on the Lie group G. (Here G is a connected Lie group and H is a
connected closed subgroup.) Also we say that F is a G/H-foliation.
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The structure of such foliation on a compact manifold is given by the following
theorem due to R. Blumenthal [Blu].

Let F be a G/H folmtlon on a connected compact manifold M. Then, there exist
a normal I'-covering M— M= M/F (where T' is a countable discrete gmup) an
injective homomorphism h : I' — G and a locally trivial ﬁbmtwn D:M — G/H
whose fibres are the leaves of the lifted foliation F of F to M and such that, for every
v €T, the following diagram is commutative:

M X M
(4) D D
o/ " am.

Here the first line denotes the deck transformation of v € T’ on M and h(y) is the
diffeomorphism of G/H induced by the left translation by h(y) on G.

The subgroup h(I") of the Lie group G which we will denote also I, is called the
holonomy group of F.

The case where the subgroup H is trivial corresponds to a Lie G-foliation. The
structure of such foliation is given by a result of Fédida [Féd] for which the theorem of
Blumenthal is a generalization to transversely homogeneous foliations.

A particular case is given by a homogeneous foliation which can be defined as
follows. Let G be a connected Lie group of dimension m + n and H a connected
closed subgroup of dimension m. Then the right action of H on G defines a foliation
F of dimension m: its leaves are the orbits and also the fibres of the principal bundle
H < G 25 W where W is the homogeneous space G/H. Now, let " be a cocompact
lattice of GG. Since the left action of I' and the right action of H commute, the action
of H induces a locally free action on the quotient M = I'\G which defines a foliation
F. (Locally free means that the isotropy subgroups are discrete.)

The foliation F on M is developable. Here M = G and the developing map is
just the locally trivial fibration D : M = G — W. The pull-back of F by the normal
I'-covering projection 7 : G — M is exactly the foliation F.

3.4. Suspension of a group of diffeomorphisms

Let L and W be two manifolds, respectively of dimensions m and n. Suppose that
the fundamental group (L) of L is finitely generated. Let p : 1 (L) — Diff(W) be
a representation, where DiH(W) is the diffeomorphism group of W. Denote by L the
universal covering of L and F the horizontal foliation on M = I x W, i.e., the foliation
whose leaves are the subsets I L x {y}, y € W. This foliation is mvarlant by all the
transformations T M — M defined by T:,(z,y) = (v -, p(7)(y)) where v - T is the
natural action of v € 71 (L) on L then F induces a codimension n foliation F, on the
quotient manifold:

M = M/(Z,y) ~ (v Z,p(7) ().



We say that F, is the suspension of the representation p : m(L) — Diff(W). The
leaves of F, are transverse to the fibres of the natural fibration induced by the projection
on the first factor L x W — L.

The geometric transverse structures of the foliation F are exactly the geometric
structures on the manifold W invariant under the action of T'.

4. Cohomologies

4.1. Cohomology of a discrete group

Let I' be a (countable) discrete group and V a vector space on which I' acts by
automorphisms; this makes V' a I'-module. The action of v € I' on v € V is denoted
v 0.

1. For each integer p > 1, let CP(I", V') be the vector space of maps from I'? to

V; an element of CP(I', V) is called a p-cochain on T' with values in V. By convention
C°(T", V) = V. Define the linear map d : CP(I', V) — CP*Y(T", V) by:

dC('Yl, . ,7p+1) =" 0(727 e 77p+1)

P
(5) + Z(—l)ZC(WL coe Yim s ViYik 1y Vit 2y« - 5 Vp+1)
1

i—
+ (—1)p+1c(71, e Yp)-

An element of the kernel ZP(I", V) of d : CP(I', V) — CPT(T", V) is called a cocycle and
an element of the image BP(I', V) of d : CP~Y(I", V) — CP(T', V) is called a coboundary.
The operator d satisfies d> = 0 and then BP(I',V) is a subspace of ZP(I',V). The
quotients HP(T', V) = ZP(I',V)/BP(I", V) for p € N are called the cohomology spaces
of I with values in the I'-module V.

2. An element c of C°(T, V) is just a vector in V and dc(vy) = y-c—c. So H*(T, V)
is the subspace V! of elements of V which are invariant under the action of T.

3. If ' = Z and its action is generated by an automorphism v of V, an easy
computation shows that:

78 ifp=0
(6) HPYI, V)= V/(v—~-v) ifp=1
0 ifp>2

where (v — 7 - v) is the subspace of V' generated by elements of the form v — v - v
with v varying in V. If, for instance, V is finite dimensional and ~ does not fix
any vector, the linear map v € V +— v — v -v € V is an isomorphism and then
H(I',V)=HYT,V)=0.
4.2. Sheaf cohomology

Let £ be a sheaf of vector spaces on M and U = {U,;};cs a locally finite open
cover of M. For any multi-index (ig,---,4,) in I, we denote Uj,...;, the intersection
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Ui, N---NU;, and X, the set of multi-indices for which Uj,..;, # 0. Let C4(U,E)
be the set of all collections (fi,-..i,)(io, i )ex, Where fi,..;, is an element of &(Us,...;,)
(space of sections of £ over the open set U,...;,); it is a K-vector space. An element
f of CYU,E) is called g-cochain on U with values in €. Define the cobord operator
§:CUU,E) — CTTYHU,E) by:

q+1
(7) (0F Vigiger = D (=1 fio i i
§=0
where fi().-.%j.-.iqﬂ is the section doeey g restricted to the open set U,...;,,,. For

instance, for a 0-cochain f = (f;), the 1-cochain 6 f = (f;;) is given by fi; = f; — fi; if
g=1and f=(fi;), then 0f = (fijx) with fi;x = fjx — fir + fij. One can verify that:

6§08 :CTHU,E) — CUU,E) — CTTHU,E)

is zero. Then the kernel Z9(U,E) of § : C1(U,E) — CITHU,E) contains the image
BY(U,E) of 6 : C1YU,E) — CUU, E); the quotient:

HIU,E) = 29U, E))BUU, E)

th

is the ¢"** cohomology space of the cover U with coefficients in the sheaf £.

If ' = {U}}jes is an open cover finer than U, that is, for j € J, there exists
i € I such that U} C Uy, we have a restriction morphism p, : C1(U, E) — CHH (U’ E)
which induces a morphism p; : HY(U,E) — HI(U',E). The inductive limit of the
system {p; cHY(UE) — Hq(Z/{’,é’)}u,<u is a vector space denoted HY(M,E) and
called the ¢'" cohomology space of M with coefficients in the sheaf £ (since we work
on paracompact Hausdorff spaces).

We have the following properties.

1. HY(M,€) is the space £(M) of global sections of &.

2. Let M and M’ be two manifolds, f : M — M’ a continuous map, £ a
sheaf on M and &’ its direct image by f. Then, for any integer ¢ > 0, f induces a
morphism f*: H1{(M', ") — HY(M,E). If M" is an other manifold, g : M’ — M" a
continuous map and £” the direct image of £’ by g, then (go f)* = f*og*. Furthermore
if M = M’ and f is the identity map, then f* is the identity of H9(M,E).

3. We say that a sheaf & is fine if, for any open locally finite cover U = {U;}
there are endomorphisms h; : £ — &£ such that the support of h; is a subset of U; and
> icr hi is the identity of £. (Recall that the support of a morphism h : & — £ is the
set supp(h) = {x € M : h(&;) # 0} where &, is the fibre of £ at x.) For instance, the
sheaf C* of germs of functions of class C* (k € NU {co}) is fine.

We have the following assertion (see [God] for the proof): Suppose &€ is a fine
sheaf. Then HI(M,E) =0 for g > 1.




4.3. Spectral sequence of a covering

Let I' be a countable discrete group and 7 : M —» M a normal I'-covering. Let 5
be a sheaf of vector spaces over M on which I' acts and & its direct image by m on M.

Let U = {U;} be a locally finite open cover of M; the pull-back U = {U;} of U by
T 1s an open cover of M. For each q € N, I" acts on the space C? (Z/I 5) of g-cochains
on U with values in &; C4 (Z/I & ) is therefore a I'module. One can then consider the
cohomology HP?(I', H? (]\/4\, £)). According to [Gro] page 204, this is the term E¥? of a
spectral sequence:

A~

(8) EPY = HP(T, HY(M, €))

converging to H*(M,E). A construction of this spectral sequence can also be found in
[Bro], Chapter VII, Sections 5 and 7.

If (]\/4\, g) is acyclic, that is Hq(]\/i, é\) = 0 for ¢ > 1, the spectral sequence E,
converges at the Fs term and then:

(9) H?(M,&) = H?(T, H(M,&)) = H?(T',E(M))

where & (]\/4\ ) is the space of global sections of the sheaf &.
4.4. Foliated cohomologies

Let M be a connected differentiable manifold supporting a foliation F of dimension
m (and codimension n).

1. For any r € N, we denote A" (T*F) the bundle of exterior algebras of degree r
over TF (tangent bundle to F). Its sections are the foliated forms of degree r; they
form a vector space Q% (M ). We have an operator (exterior derivative along the leaves)
dr : Q- (M) — Q1 (M) defined (as in the classical case) by the formula:

r+1
dra(Xi,--, Xpp1) = Z(—l)@“x (X, X, Xpga)

+Z Z+J XmX]le"'7)?1'7”'7553‘7”'7)(7’—0—1)
1<J

where )?Z means that the argument X; is omitted. We easily verify that d% = 0. So
we obtain a differential complex (called the de Rham foliated complex of F):

0 — QL (M) 25 QL(M) 25 ... 25 Qe (M) 25 Qp(M) — 0.
Let Z%(M) be the kernel of dr : Q% (M) — Q% (M) and B%(M) the image of

dr : Q5 (M) — Q5 (M). The quotient H(M) = Z5(M)/B%(M) is the rt! vector
space of foliated cohomology of (M, F).



Foliated cohomology was substantially used in the study of the parametric rigidity
of some Lie group actions. (See [MM] and [Asa] for an account on the subject).

2. Let 7: E — M be a F-foliated vector bundle. Then dr extends to the space
% (M, E) of foliated forms with values in E and gives rise to a differential complex:

(10) 0 — Q%(M, E) 25 QL (M, E) 245 ... 25 Q=Y (M, E) 45 Q2(M,E) — 0

whose cohomology H3 (M, E) is called the foliated cohomology of the foliated manifold
(M, F) with values in E. If &, is the sheaf of germs of basic sections of E and Q' (E)
the sheaf of germs of foliated r-forms with values in E/, we have a fine resolution:

dr

11)  0— & — Q%(E) %5 QL(E) %5 ... 25 Qe Y(E) 25 Q(E) — 0

first established by Vaisman in [Vai] Chapter 5 Section 2. Then:

H:(M,E) = H*(M,&).

3. If F is the trivial vector bundle of rank 1, &, is the sheaf of germs of basic
functions and so H" (M, &,) = Hz(M) for r € N.

4. As our main interest in this work is the study of infinitesimal deformations of
a developable foliation (M, F), our F-bundle E will now be the normal bundle V of F.

The following proposition will be an essential ingredient in the proof of Theorem
5.2 which is the main result of this paper.

4.5. Proposition. Suppose that the foliation F is a (locally trivial) fibration M —— W
with fibre L. If HY(L) = 0 (for some ¢ > 1) then H3(M,V) = 0.

Proof. Note that ) is the pull-back by 7 of the tangent bundle T'W of W. Then it is
trivial over each leaf.

Let {U;};cr be a locally finite open cover of W trivializing both the fibration 7
and the vector bundle TW. For each i € I, we set V; = 7~ 1(U;) ~ U; x L; then {V;}
is an open cover of M and the vector bundle V is trivial over V. Let p; be a partition
of unity associated with the cover {U;};c; and let p; = p, o m. Then p; is a partition
of unity associated with the cover {V;};cr; in addition each of the functions p; is basic
i.e. drp; = 0.

Let a € QL (M, V) be a foliated g-form with values in V such that dro = 0. Denote
by «; its restriction to the open set V;; «; is a foliated g-form on the foliated manifold
(V;, F) with values in V and it satisfies dra; = 0. As the fibration 7 : V; — U; and
the vector bundle YV — V; are trivial and H%(L) = 0 (by hypothesis), there exists
Bi € Qg;l(Vi,V) such that dzf; = «;. Define B € Qgr_l(M,V) by 8 = > cr pibi-
Then, taking into account the fact that dzp; = 0, we have:

drB =dF (Z /%'51) = Z dr(pifi) = Z pi(drpi) = Zpi%’ = a.

iel iel iel iel
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Thus we have shown that the vector space H%(M,V) is trivial. d
4.6. Integrable homotopy

This property is for foliated cohomology of a foliation what the ordinary homotopy
is for de Rham cohomology of a manifold.

Let (M,F) and (M’,F’) be two foliated manifolds. We equip M x R with the
foliation § whose leaves are L x R where L is a leaf of 7. Let f,g : M — M’ be
two differentiable maps. An integrable homotopy from f to g is a differentiable foliated
map H : (M xR, F) — (M’, F’) such that:

f(z) fort <0
H(z:t) = {g(z) for t > 1.

We have the following assertions (see [Ek1]) established in the case of foliated
cohomology but easily generalized in the case where it is valued in the normal bundle.

1. If there exists an integrable homotopy from f to g then the induced morphisms
[*.9° :Hp (M) — H5(M) are the same.
2. Suppose that the two foliated manifolds (M,F) and (M’',F') have the same

integrable homotopy type. Then their foliated cohomologies Hy(M) and Hy, (M') are
isomorphic.

5. Infinitesimal deformations of developable foliations
In all this section, M will be a connected compact manifold of dimension d = m + n.
As usual, all the objects we will consider are supposed to be of class C°.
5.1. Preliminaries

All that we are going to expose in this subsection is taken from the paper [Ham)].

For any = € M, we denote G,(M,m) the Grassmannian of m-planes of T,, M. We
obtain a locally trivial bundle G(M, m) — M whose typical fibre is the Grassmannian
G(d,m) of the vector space RY. A C°-field (or just a field) of m-planes on M is nothing
but a section of G(M,m) — M. Let 7 be a field of m-planes and (7, ---,7,,) a basis
of local sections of 7. If X =", a;7; and ¥V = ZT:l b;7; are two local sections of 7,

we have:
(12) (X, Y] =) abjlrim)+ > {ai(mi-bj)ms — bi(75 - ai) 7}
i =1 i =1

In the quotient V = T'M /7, the value of [X,Y] at a point x € M depends only on
the values of X and Y at this point and not on the values of their derivatives. This
gives rise to a 2-form Q(7) : 7 x 7 — V whose value at X, and Y} is the class in the
quotient V, = T, M /1, of the vector [X,Y],.

The 2-form Q(7) is an element of the space C*°(A2(G(T M, m)) of the C*°-sections
of the bundle A?(G(TM,m)) — G(T'M,m) whose fibre over a m-plane 7 of T'M is the
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space of 2-skew-symmetric forms A%(7, TM /7). By Frobenius theorem, 7 is integrable
if and only if the Q(7) is identically zero. In this case, T defines a dimension m foliation
F on M. The C*®-map Q : 7 € C®(G(M,m)) — Q(7) € C®°(A%2(G(TM,m)) plays a
fundamental role in the theory of foliations.

The space C*>(G(M,m)) of C*°-sections of the bundle G(M,m) equipped with its
natural C*>°-topology is a Fréchet manifold [Ham|. The subset §(M,m) of foliations of
dimension m on M (“zero set of Q") is closed; we equip it with the induced topology.

Let F be a foliation of dimension m, that is, F is an integrable field of m-planes
on M. For any diffeomorphism ¢ of M, the pull-back ¢*(F) of F by ¢ is a dimension
m foliation on M i.e. an element of G(M,m) such that its associated 2-form Q(F) is
identically 0. Then we have a C*°-map Or : ¢ € Diff(M) — ¢*(F) € C*°(G(M,m))
(with values in fact in F(M,m)) and a sequence:

(13) Diff(M) 2% € (G(M,m)) L5 O (AX(G(T M, m))

satisfying () o © 7 = 0. This sequence is called the non-linear deformation complex of
the foliation F. We say that F is C*°-stable if there exist an open neighborhood
of F in C*°(G(M,m)) and an open neighborhood 2 of the identity in Diff(M) with
©r(2) C U and such that the complex:

(14) W 9% (-2 > (A2(G(T M, m))

is exact. This means that any foliation F’ of dimension m on M sufficiently close (in
the C*°-topology) to F is conjugate to F by a diffeomorphism ¢ of M close to the
identity i.e. p*(F') = F.

The study of the stability of F requires the linearization of the nonlinear complex
of its deformations. But this one is exactly the foliated de Rham complex (up to the
degree 2) with values in the normal bundle (cf. [Ham] for calculations):

(15) 0 — Q% (M, V) 45 QL (M, V) 45 02(M, V)...

An element of H%(M,V) (cohomology at degree 1 of the complex (15)) is called
an infinitesimal deformation of F. So in all the following sections we will focus our
attention mostly on the vector spaces Hx(M,V).

Now the foliation F we will consider on our manifold M will be developable. Let
M — M= ]/\4\/I‘ be its normal I'-covering and D : M — W its developing map
whose fibres are the leaves L of the pull-back F = T (F).

Let V = TM /T]? denote the normal bundle of F. Since the group I' acts on M
by diffeomorphisms preserving the foliation F , it preserves the tangent bundle TF and
thus acts on the normal bundle V: V is both a F-foliated bundle and a I'-bundle. Now
because the leaf space of F is the manifold W, the action of I" on Y induces one on the
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tangent bundle of W. Therefore the space C’{fo(ﬁ) of basic sections of V is the space
X (W) of vector fields on W and on which I" acts.

Finally, our main result on foliated cohomology and infinitesimal deformations of
developable foliations is given by the following theorem.

5.2. Theorem. Let F be a developable foliation on a connected compact manifold M.
The notations are those just given before. We have the following assertions.

1. If HY(L) = 0, the space H-(M,V) is isomorphic to HY(T', X(W)).
2. If Hq(f) =0 for all ¢ > 1, each HE(M,V) is isomorphic to HI(I', X(W)).

Proof. It is almost immediate since we have prepared in the preceding sections all the
material for this purpose.

Let & and gb denote the sheaves of germs of basic sections respectively of the
bundles V and V. By 4.3. we have a spectral sequence (E,., d,.) converging to H* (M, &)
and whose F5 term is:

(16) EP! = HP(T, HY(M,&)).

1. Since the foliation (M\, .7?) is the fibration D : M —s W and H' (E) = 0 by
hypothesis, we get by applying Proposition 4.5. H*(M,&,) = 0 and then ES' = 0.

On the other hand H*(M,&,) = B @ EY = E!0 where EP4 is the limit of the
spectral sequence. Now, for r > 2, the differentials:

. 10 1+r,—r+1 . 1—r,r—1 10
d.: E." — E, and d, : E, — b,
are zero since the vector spaces EI" "+ and E!=""~1 are trivial; therefore:
10 10 1 0(Af €
EY — B — HY(T, HO(M, &))).

But H° (M\,é\b) (space of global F-basic sections of &) is exactly the space X(W) of
global vector fields on W. Finaly we have:

(17) Hx=(M,V) = H'(M,&) = H'(T,X(W)).

2. Since HY(L) = 0 for ¢ > 1, we get from Proposition 4.5. Hq(M\, &) = 0 for
g > 1. Then (like in Subsection 4.3. Formula (9)) the spectral sequence converges at
the F5 term and then:

HP (M, &) = E° = HP(L, X(W)).

This ends the proof of the theorem O

Equality (17) reduces the computation of the space of infinitesimal deformations
H.(M,V) of the foliation (M, F) to that of the first cohomology space of the discrete
group I' with values in the I'-module X(WW'). We will see explicit examples in section 6.
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Using this result, Stephane Geudens has constructed recently in [Geu] a class of
infinitesimally rigid non-Hausdorff Riemannian foliations. The only ones known so far
are Riemannian with compact leaves and whose first cohomology space is trivial.

6. Examples and explicit computations

Some of them are well known and have already been studied under a continuous aspect
(using vector fields and differential forms). We take them back by applying the different
methods of cohomology of discrete groups we have just exposed.

6.1. Example 1

Let M be the torus T™+" = R™*"/Z™*t" where m and n are positive integers.
We can view it as the product T x T" and then as the quotient of M = R™ x T"™ by
the free and proper action of the group I' = Z™:

(18) (k, (z,y)) € Z™ x (R™ xT") — (x + k,y) € R™ x T".
The canonical projection 7 : M — Misa I-covering. Denote by (e, -, e.,) the
canonical basis of R, that is e; (for i = 1,---,m) has its jth component equal to 1

and all the others equal to 0. This basis is also a system of generators of T".

Let p : I' — Diff(T™) be the representation which associates to each generator e;
the translation on T" by a vector o;; = (a}, -+, a?). The suspension of p gives rise to
a foliation F on M whose associated lifted foliation F to M is just the one defined by
the second projection M =TR"™ x T" — T" = W. The action of T on W is given by

the representation p.

The normal bundle V is identified to the tangent bundle of W = T™ which is trivial
as a foliated bundle: any linear vector field Y on W is basic. So V is trivial as foliated
vector bundle and also as a I'-bundle. So:

(19) Hz(M,V) = HT,C>®(T")) @ R".

Then to determine Hx(M,V) it is sufficient to determine the space H'(T', C>(T™))
which is the ordinary foliated cohomology Hx (M) of the manifold (M, F).

Let us compute the vector space H!(I', C>°(T")). We shall do it by induction on
the integer m. Suppose that m = 1, that is, I' is reduced to its first factor I'y = Z.
Then by formulas (6), H" (1, C°°(T™)) = 0 for r > 2, HY(I';, C°°(T™)) is the subspace
of C°°(T™)) consisting of functions invariant by 71 and H' (T, C>°(T")) is the cokernel
of the operator:

§: feC(T")— (f — for) e C(T)

where 71 is the translation by the vector a; = (i, -+, af). Then we have to solve the
cohomological equation:

(20) fy) = fly+a1) =gly) forallyeT"
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where g is given in C*°(T").
One can find the resolution of this equation in several works. We will quickly
resume the one given in [EH] and focus on the case where the components of the vector

a; = (ai, -+, a}) are linearly independent over Q. We denote ( , ) the usual scalar
product in R™.

i) We say that oy is Diophantine if there exist real numbers C > 0 and n > 0
such that |(m, o) > S5 for all m € Z" different from 0.

|m|”
ii) We say that oy is Liouville if there exists a real number C > 0 such that for
any n > 0, there exists m,) € Z" satisfying the inequality |(m,,, a1)| < ﬁ
n
Any vector a; € R™ whose components af,---,af are algebraic numbers and
linearly independent over Q is Diophantine (see [EH] for the proof).

Let £ : C*°(T") — C be the functional defined by £L(g) = [;. g(x)dx. Its kernel
N is a closed codimension one subspace of C*°(T"). We have the following assertions:

iii) HO(T, C>°(T™)) consists of constant functions: it is isomorphic to R.

iv) If the vector oy is Diophantine, then the image of the operator ¢ is equal to
N. In this case, H (', C*°(T")) is a Hausdorff topological vector space of dimension
1 generated by the constant function equal to 1.

v) If the vector oy is Liouville then H'(T',C°°(T™)) is a non Hausdorff infinite
dimensional topological vector space.

Suppose now that I' = I'y x I'y where I'y and I'y; are copies of Z. By Kiinneth
formula (see [Bro] page 120), the space H! (T, C>°(T")) is:

HY(I'y,C°°(T™")) ® H'(I'y, C°°(T™)) @ H'(I'y, C°°(T™)) @ H°(T'y, O (T™)).
But H°(T'y,C°°(T")) and H®(T'y, C>°(T™)) are isomorphic to R; then:
H'(T,C>(T")) = H' (T'1,C*(T")) ® H' (T3, C>(T")).

So H(T',C>°(T™)) is Hausdorff and isomorphic to R? if both the vectors a; and ay
are Diophantine and it is a non Hausdorff infinite dimensional topological vector space
if one of these vector is Liouville.

A repeated application of Kiinneth’s formula gives the following result for the case
where the group I' is Z™:

vi) If all the vectors ay, - -+, auy are Diophantine, H*(T', C*°(T™)) is Hausdorff and
1somorphic to R™. Then:

(21) Hz(M,V) = H'(T,C>®(T")) ® R" = R" @ R™.
In fact one can easily prove that:
(22) HY(T',C*>®(T")) = R
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m!

for g =0,1,---,m where C = PICEIE
vii) If at least one of the vectors ay, -+, uy, is Liouville, HY(T',C°°(T™)) is a non

Hausdorff infinite dimensional topological vector space. Therefore it is the same for the
vector space Hx(M,V).

6.2. Example 2

The construction of this example is given in [EN] where only the vector space
H}_-(M , V) was computed. We will take it back and calculate explicitly all spaces of its
foliated cohomologies.

1. Let A be a square matrix with integer coefficients and determinant 1. We
suppose that A is diagonalizable on the field of the real numbers and having all its
eigenvalues ft1, ..., s A1,. .., Ap such that: O < py ..., <1 < Aq,...,\,. Because
the product of these positive numbers is 1, the integers m and n are all such that m > 1
and n > 1.

We can think of A as a diffeomorphism of T™1". Let uy,- -+, Upm, V1, -, Uy be
the eigenvectors corresponding respectively to the eigenvalues 1, ..., tm, A1,---, An
and X1,...,X,,,Y1,...,Y, be linear vector fields on T™"" whose directions are given
respectively by w1, -, Um,v1, -+, v,. We have:

(23) AX =i Xy, AY;=X\Y; for i=1,...,m and j=1,...,n.

2. Denote by Fq the foliation on T™*™ defined by the vector fields X1,..., X,,.
The product of Fy by R gives a codimension n foliation F on M = T™" x R which
is invariant by the diffeomorphism ¢ of T™*" x R sending (z,t) to (A(z),t+ 1). So it
induces a codimension n foliation F on the quotient manifold TZ‘JF"JA =T " x R/¢.
Notice that TZ‘JF"JA is a flat bundle over the circle S! with fibre T™*". In fact the
manifold M = T}""! is the homogeneous space G/T" where G is the semi-direct
product R™*™ x R given by the action:

(t,2) ER X R™T™ s Atz ¢ R™T"

and T is the discrete subgroup {(k,s) € G |k € Z"™*" s € Z}. The subgroup:

Hz{(Zaiui,b> €qG | al,...,am,bER}
i=1

is isomorphic to the semi-direct product R™ x R where R acts on R™ by homothety
in each eigendirection. The action of H on T’y*"*! induced by this identification is a

locally free action whose orbits define the foliation F.
3. From now on we shall assume that the matrix A fulfills the following condition.

(C) The basis of R™T™ given by the eigenvectors uy, ..., Um, V1, ..,V 18 such that the

coordinates w', ..., w™T™ of any of its vectors w are linearly independent over Q.
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Under this assumption any of the vectors uq, ..., u,, fulfills the Diophantine con-
dition (cf. [Sch]) we gave in the Example 5.1.

4. Tt is well known that if the eigenvalues of A are all different then condition (C)
is fulfilled if and only if the characteristic polynomial x 4(t) of A is irreducible over Q.
The following example shows the existence of matrices fulfilling the above properties.

1 1 1 ... 1
1 2 0 0
A=1|1 0 3 0
1 0 0 ... dnin
where the diagonal elements dy,...,dy 4+, of A are inductively defined by d; = 1 and
dey1 =1+dy-dy-...-dgfor £ =1,...,m+n—1. In this case the matrix A has
one eigenvalue v; in the interval |0, 1] and exactly one eigenvalue vo, ..., vy, 1, in each
of the intervals |do, ds, |ds, d4], ..., |dmin,o0[. In particular all the eigenvalues are

different and there is only one eigenvalue smaller than 1. This implies that y4(¢) is
irreducible over Z and thus over Q because of the Gauss Lemma. Therefore the matrix
A fulfills condition (C).

5. To compute the two cohomologies H>(M) and H3(M,V) we shall use the
spectral sequence (8) of the foliated Z-covering 7 : (]\/4\ F ) — (M, F). (Recall that
Z acts on M = T™ " x R by its generator o(z,t) = (A(z),t +1).) We will do the
calculation just for H3(M,V), it is practically the same for H3(M). The spectral
sequence F,. in our situation has its term Fj:

(24) E§" = HY(Z, HL(M,V))

and converges to the cohomology H3(M,V). (Here V denotes the normal bundle of
the foliation F.) Since the retraction of M = T™"™ x R along the second factor is
an integrable homotopy from the foliated manifold (M, F) to the foliated manifold

(T™+" Fo) (see point 2 of subection 4.5), we have:

HL(TL.P) = H, (T4, vy

where V) is the normal bundle of the foliation Fj. Since all the vectors uq,- - -, u,, are
diophantine:
(25) HL (T™+", V) = R @ R™.

6. Now we will describe the action of the diffeomorphism ¢ of M on these two
spaces. For this let us take again the vector fields X1, -, X,,, Y1, --,Y,, satisfying the
relations (23). They constitute a basis of the module X(T™"™) of tangent vector fields
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to T™*™; the first ones X7, ---, X,, are those who are tangent to the foliation Fy. Let
01, -+, 0, be the 1-forms (with constant coefficients) such that, for i,k =1,---,m:

9¢(Xk)=5f and 0;(Y;)=0 for j=1,---,n

where 6¥ is the Kronecker symbol. The family {6;, A-- N0 1 <iyp <--<idg <m}is
a basis of Hy. (T™*") for ¢ > 1; Hy, (T™*") = R is generated by the constant function
equal to 1. Then one can take:

{0y, Ao N0, ®Y; 1< iy < <ig<m and j=1,---,n}

as a basis of H}O (T™*+" V). The action of the matrix A on this space is given on the
elements of this basis by:

A (O NN, @) = (ATH (i) A== A (AT (6s,) @ A(Y))
= ('ui_ll ...Mi—1> (9“ Ao /\Hiq) ® ()\]Y'J)

— () A O A A, B ).

Since 0 < p1,- , pm < 1 and 1 < A1,---, Ay, all the products (p;, ---,uiq)_l)\j are
greater than 1; then no one of the elements 6;, A --- A 6; ® v; is invariant under the
action of A. Therefore, for any ¢ € {0,1,---,m}:

EY = HY(Z, HE (T™", V) = 0.

7. Recall that if V' is a vector space on which Z acts freely HP(Z,V) = 0 for p > 2.
Applying this to our situation, we get, for p > 2:

EY* = HP(Z,H% (T, Vy)) = 0.

Then the second differential dy : EEY — EPT>77 " is zero. This implies the convergence
of the spectral sequence at the Fy term, and then H%-(M,V) = EY" @ E%’T_l. But
EY" =0, so:

(26) Hy(M,V) = Ey" ' = HYZ,Hy 1 (T™™, V) = H'(Z,R? @ R™)
where d = C"~1 = (r—l)!(:i—r—l-l)!' Because the action of Z is without fixed vector on

the space R? ® R™ (which is finite dimensional), H'(Z, R% ® R") is trivial and then so
is H7(M,V) for any r =0,1,---,m.

8. We just have showed that H%(M,V) = 0 for any r = 0,1,---,m, in particular
H3(M,V) = 0. The foliation F is then infinitesimally stable. This result is not new:
the C'°°-stability (which is stronger) was already proved in [EN].
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9. In a similar way one can prove that the two spaces H%(M) and Hx(M) are
equal to R and that Hz(M) =0 for r > 2.

6.3. Example 3

Let M be a compact manifold equipped with a Lie G-foliation F. Let 7 : M— M
be the corresponding I'-covering and D : M — G its developing map. As it was
mentioned in the subsection 3.3, there exists an injective representation p : I' — G
such that, for any v € I', the following diagram is commutative:

AT
D 1D

c "™ a

As a subgroup of G, I' acts on it by left translations. If H! (E) = 0, by Theorem
5.2, the space H}_-(M , V) of infinitesimal deformations of F is identified to the space
HY(T,X(G)). But X(G) = C*(G) ® G where G is the Lie algebra of the group G.

Because the action of I' on G is trivial, we immediately have:
(27) H:(M,V)=H'T,C®(G)®¢G

where the action of I' on G is by left translations and by the induced usual one on the
Fréchet space C*°(G).

The following problem is of interest independently of that which it could have in
deformation theory of Lie foliations.

Problem. Let G be a connected Lie group and I' a countable subgroup. Compute
the cohomology H*(I', C*°(G)).

For T finite or discrete, we have (see [Ek2]) H"(T',C*(G)) = 0 for » > 1. The

case I' ~ Z was studied in [EH]. The one where G is a torus and I' ~ Z™ is more or
less our example 6.1.

When T is infinite and not closed, the quotient @ = G/I' is a -manifold in the
sense of [Bar|. Then one can ask: What relationship is there between H*(I', C*°(QG))
and the cohomology of Q-manifolds defined in [Bar|?

In the general case of a transversely homogeneous G/H-foliation F, with the
hypothesis H!(L) = 0, the vector space Hx(M,V) is H'(I', X(G/H)) where the action
of I on G/H is induced by its left action on G.
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