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Abstract. Let F be a foliation on a connected manifold M and denote by TF
the tangent bundle to F and V = TM/TF its normal bundle. We say that F is

developable if there exists a normal Γ-covering π : M̂ −→ M such that the pull-

back F̂ of F by π is a locally trivial fibration D : M̂ −→ W on which Γ acts by

automorphisms (and then on W ). The fibre of D is denoted L̂.

Suppose M compact. We prove: i) if H1(L̂) = 0, the space H1
F (M,V) of

infinitesimal deformations of (M,F) is naturally identified to the first cohomology space
H1(Γ,X(W )) of the discrete group Γ with values in the Γ-module X(W ) of smooth

vector fields on W ; ii) if L̂ has trivial cohomology, the foliated cohomology H∗
F (M,V)

of (M,F) with values in V is isomorphic to the cohomology H∗(Γ,X(W )) of Γ with
values in X(W ). Some examples and explicit computations are given.

0. Introduction

The study of deformations of foliations uses various mathematical tools, for instance

that of differential geometry, global analysis, algebraic topology... They fall within

the more general framework of deformation theory of geometric structures which was

initiated by the works of Kodaira and Spencer [KS] in the 50’s on the variation of

complex structures. Even if there is still work to be done, Kuranishi [Kur] has finalized

the subject by showing the existence of a versal space through which transits any

deformation of a given complex structure on a compact manifold. This result was

a great advance in the development of complex geometry. Adapting these methods,

Girbau, Haefliger and Sundararaman [GHS] established, in a similar way, the existence

of a versal space for the deformations of transversely holomorphic foliations.

Unfortunately, the tools used in the complex case were not completely available

for studying the deformations of real foliations. Moreover, at that time, the theory

really lacked non-trivial examples. The first one which is differentiably stable and

with an interesting dynamic (for instance all its leaves are dense) was given in [GS] by

Ghys and Sergiescu in 1980. Their constructions and proofs are based on qualitative

properties of codimension one foliations on 3-manifolds. More or less around the same

time, Hamilton gave a strong criterion for deciding whether a foliation on a compact

manifold is differentiably stable. But the paper [Ham] containing this result (always
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highly requested by specialists in these matters) has never been published, probably

by voluntary decision of the author who had as examples to which he could apply its

criterion only Riemannian foliations with compact leaves. Later on, using this criterion,

in [EN] the authors constructed a class of C∞-stable foliations (of arbitrary dimension

and codimension) which includes the example in [GS].

A powerful tool in the study of the deformations of a foliation (M,F) and which

appears to be an essential ingredient in the Hamilton criterion is the foliated cohomology

H∗
F (M,V) with values in the normal bundle V of F . This is the reason why it has since

been the subject of works by many authors.

In this paper, we explicitly describe the foliated cohomology with values in the

normal bundle for developable foliations and relate it, by spectral sequences, to the

cohomology of a discrete group with coefficients in the Fréchet space of C∞-vector

fields over a manifold naturally associated to the foliation. This makes possible to

transpose its calculation, usually carried out by differential forms, to that using different

methods and which sometimes prove to be more effective. In particular, this gives a

way to compute the space H1
F (M,V) which contains the infinitesimal deformations of

F . Explicit examples are given showing concretely the interest of this point of view.

Of course, the category of developable foliations is particular but it includes enough

examples, for instance foliations obtained by suspension of groups of diffeomorphisms

and transversely homogeneous foliations. For these latter foliations, a fairly specific

study of their deformations accompanied by those of their transverse homogeneous

structures was carried out in [EGN].

All the manifolds and the different geometric structures (functions, vector fields,

differential forms...) are assumed to be of class C∞.

The following notion appears frequently in this article. We will fix once and for

all our terminology that designates it (even though it may not be the usual one).

Let M be a manifold and Γ a countable discrete group. A normal Γ-covering of

M is given by a manifold M̂ with a free and proper action of Γ by diffeomorphisms

such that M is the quotient M̂/Γ.

1. Foliations

Let M be a connected manifold of dimension m + n. A foliation of codimension n
on M is a geometric structure such that around each point one can cut a small open
neighborhood which looks like the product Rm×Rn where the second factor is equipped
with the discrete topology. More precisely we have the following:

1.1. Definition. Let M be a manifold of dimension m+n. A codimension n foliation

F on M is given by an open cover U = {Ui}i∈I and for each i, a diffeomorphism
ϕi : R

m+n −→ Ui such that, on each non empty intersection Ui ∩ Uj , the coordinate
change:

(1) ϕ−1
j ◦ ϕi : (x, y) ∈ ϕ−1

i (Ui ∩ Uj) −→ (x′, y′) ∈ ϕ−1
j (Ui ∩ Uj)

has the form x′ = ϕij(x, y) and y′ = γij(y).
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The manifoldM is decomposed into connected submanifolds of dimensionm. Each
of them is called a leaf of F . A subset U of M is saturated for F if it is a union of
leaves: if x ∈ U then the leaf passing through x is contained in U .

Coordinate patches (Ui, ϕi) satisfying conditions of definition 1.1 are said to be
distinguished for the foliation F .

The following (second) definition is more appropriate for introducing the notion
of transverse structure, which is crucial in the theory of foliations.

Let F be a codimension n foliation on M defined by a maximal atlas {(Ui, ϕi)}i∈I

like in definition 1.1. Let π : Rm+n = Rm×Rn −→ Rn be the second projection. Then
the map fi : Ui −→ Rn (where fi = π ◦ ϕ−1

i ) is a submersion. On Ui ∩Uj 6= ∅ we have
fj = γij ◦fi. The fibres of the submersion fi are the F -plaques of Ui. The submersions
fi and the local diffeomorphisms γij of Rn give a complete characterization of F .

1.2. Definition. A codimension n foliation on M is given by an open cover (Ui)i∈I ,
submersions fi : Ui −→ T over a n dimensional transverse manifold T and, for any
non empty intersection Ui ∩ Uj, a diffeomorphism:

γij : fi(Ui ∩ Uj) ⊂ T −→ fj(Ui ∩ Uj) ⊂ T

satisfying fj(z) = γij ◦ fi(z) for z ∈ Ui ∩ Uj . We say that {Ui, fi, T, γij} is a foliated

cocycle defining F .

The foliation F is said to be transversely orientable if the transverse manifold T
can be given an orientation preserved by all the local diffeomorphisms γij .

1.3. Morphisms of foliations

Let M and M ′ be two manifolds endowed respectively with foliations F and F ′. A
map f : M −→ M ′ will be called foliated or a morphism between F and F ′ if, for every
leaf L of F , f(L) is contained in a leaf of F ′; we say that f is an isomorphism if, in
addition, f is a diffeomorphism whose restriction to any leaf L ∈ F is a diffeomorphism
on the leaf L′ = f(L) ∈ F ′.

Suppose now that f is a diffeomorphism of M . Then for every leaf L ∈ F , f(L) is
a leaf of a codimension n foliation F ′ on M ; we say that F ′ is the image of F by the
diffeomorphism f and we write F = f∗(F ′). Two foliations F and F ′ on M are said to
be Cr-conjugated (topologically if r = 0, differentiably if r = ∞ and analytically in the
case r = ω) if there exists a Cr-homeomorphism f : M −→ M such that f∗(F ′) = F .

The set of C∞-diffeomorphisms of M which preserve the foliation F is a group

denoted Diff(M,F).

The following definition introduces a very important property of a foliation. It

describes a large part of its geometric structure.

1.4. Definition. Let M be a manifold and F a codimension n foliation on M defined

by a foliated cocycle {Ui, fi, T, γij}. A transverse structure to F is a geometric

structure on T invariant by the local diffeomorphisms γij .

Examples of such structures will be given later.
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2. Basic elements

Let us fix some notations. Let F be a codimension n foliation on M . We denote by

TF the tangent bundle to F and V its normal bundle that is the quotient TM/TF .

2.1. Basic forms and basic vector fields

We denote by X(F) the space of sections of TF (elements of X(F) are vector fields

X ∈ X(M) tangent to F).

A differential form α ∈ Ωr(M) is said to be basic if it satisfies iXα = 0 and

LXα = 0 for every X ∈ X(F). (Here iX and LX denote respectively the inner product

and the Lie derivative with respect to the vector field X.) For a function f : M −→ R,

these conditions are equivalent to X · f = 0 for every X ∈ X(F) i.e. f is constant

on the leaves of F ; we denote by Ωr
b(M) the space of basic forms of degree r on the

foliated manifold (M,F); this is a module over the algebra C∞
b (M) of basic functions.

A vector field Y ∈ X(M) is said to be foliated, if for every X ∈ X(F), the bracket

[X,Y ] ∈ X(F). We see easily that the set X(M,F) of foliated vector fields is a Lie

algebra in which X(F) is an ideal. The quotient Xb(M) = X(M,F)/X(F) is called the

Lie algebra of basic (or transverse) vector fields on the foliated manifold (M,F). Also,

it has a module structure over the algebra C∞
b (M).

2.2. Foliated vector bundles and basic sections

1. Let τ : E −→ M be a vector bundle of rank N defined by a cocycle {Ui, gij}

where {Ui} is an open cover of M and the gij are the (continuous) transition functions

gij : Ui ∩ Uj −→ GL(N,R) satisfying the cocycle condition:

(2) gij(z) = gik(z) · gkj(z) for z ∈ Ui ∩ Uj ∩ Uk.

We say that E is foliated if the functions gij are basic on Ui ∩ Uj . For such vector

bundle, the foliation F can be lifted to a same dimension foliation FE on E such that

the projection τ sends leaves of FE into leaves of F .

Let (M,F) and (M ′,F ′) be two foliations and τ : E −→ M and τ ′ : E′ −→ M ′

foliated vector bundles. A morphism of vector bundles E −→ E′ is a foliated morphism

if it sends leaves of FE into leaves of F ′
E′ . Of course, it induces a foliated morphism

(M,F) −→ (M ′,F ′). Foliated vector bundles and their morphisms form a category.

2. The fundamental example of a foliated bundle over a foliated manifold (M,F)

is the normal bundle V = TM/TF (by definition of the foliation F). The bundles

naturally associated to it, for instance its dual V∗, all of its exterior and symmetric

powers Λ∗V∗ and S∗V∗... are foliated.

3. Recall that a section of E is a C∞-map α : M −→ E such that τ ◦α = idM . If

(U, (x1, · · · , xm, y1, · · · , yn)) is a distinguished coordinates system on which E is trivial,

α is represented by a C∞-function α : U −→ RN . We say that α is basic, if the function

αU is basic, that is, it depends only on the transverse coordinates (y1, · · · , yn). The
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space C∞
b (E) of basic sections of E is a module over the algebra A = C∞

b (M) of basic

functions. For more details on these foliated objects see [Ek3].

For a foliated vector bundle E we denote by Eb the sheaf of germs of its basic

sections. In general Eb is not fine (see subsection 4.2) and then it gives rise to a non

trivial cohomology H∗(M, Eb). We shall see in section 4 how to give a fine resolution

of this sheaf and compute H∗(M, Eb) by using special differential forms on M .

3. Developable foliations

3.1. Foliated covering

1. Let M̂ be a connected manifold of dimensionm+n endowed with a codimension

n foliation F̂ . Suppose that a discrete group Γ acts on M̂ freely and properly by

diffeomorphisms preserving F̂ . The quotient M = M̂/Γ is a manifold of dimension

m + n and the canonical projection π : M̂ −→ M is a normal Γ-covering. Moreover,

because elements of Γ preserve F̂ , this foliation induces on M a codimension n foliation

F for which π is a morphism of foliations. We say that π : (M̂, F̂) −→ (M,F) is a

foliated normal Γ-covering.

2. Conversely, let M be a connected manifold of dimension m+n equipped with a

codimension n foliation F . For any normal Γ-covering M̂
π

−→ M = M̂/Γ, the pull-back

F̂ = π∗(F) of F is a codimension n foliation such that π : (M̂, F̂) −→ (M,F) is a

foliated normal Γ-covering.

This enables us to give the definition of the category of foliations we will be

interested on in all this paper.

3.2. Definition. A codimension n foliation F on a connected manifold M is said

developable if there exists a normal Γ-covering M̂
π

−→ M such that the leaves of the

pull-back F̂ of F are the fibres of a locally trivial fibration D : M̂ −→ W . This fibration

is called the developing map of F .

The group Γ acts on M̂ by automorphisms of F̂ and then by diffeomorphisms on

W . For any such automorphism γ ∈ Γ, we denote by γ the induced diffeomorphism on

W ; we have a commutative diagram:

(3)

M̂
γ

−→ M̂
D ↓ ↓ D

W
γ

−→ W.

From now on, the examples we will give in this section are all developable foliations.

3.3. Transversely homogeneous foliations

LetM be a manifold of dimension m+n endowed with a codimension n foliation F

defined by a foliated cocycle {Ui, fi, T, γij}. We say that F is transversely homogeneous

if T is a homogeneous spaceG/H and the diffeomorphisms γij are induced by restriction

of left translations on the Lie group G. (Here G is a connected Lie group and H is a

connected closed subgroup.) Also we say that F is a G/H-foliation.
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The structure of such foliation on a compact manifold is given by the following

theorem due to R. Blumenthal [Blu].

Let F be a G/H-foliation on a connected compact manifold M . Then, there exist

a normal Γ-covering M̂ −→ M = M̂/Γ (where Γ is a countable discrete group), an

injective homomorphism h : Γ −→ G and a locally trivial fibration D : M̂ −→ G/H

whose fibres are the leaves of the lifted foliation F̂ of F to M̂ and such that, for every

γ ∈ Γ, the following diagram is commutative:

(4)

M̂
γ

−→ M̂
D ↓ ↓ D

G/H
h(γ)
−→ G/H.

Here the first line denotes the deck transformation of γ ∈ Γ on M̂ and h(γ) is the

diffeomorphism of G/H induced by the left translation by h(γ) on G.

The subgroup h(Γ) of the Lie group G which we will denote also Γ, is called the

holonomy group of F .

The case where the subgroup H is trivial corresponds to a Lie G-foliation. The

structure of such foliation is given by a result of Fédida [Féd] for which the theorem of

Blumenthal is a generalization to transversely homogeneous foliations.

A particular case is given by a homogeneous foliation which can be defined as

follows. Let G be a connected Lie group of dimension m + n and H a connected

closed subgroup of dimension m. Then the right action of H on G defines a foliation

F̂ of dimension m: its leaves are the orbits and also the fibres of the principal bundle

H →֒ G
D
−→ W where W is the homogeneous space G/H. Now, let Γ be a cocompact

lattice of G. Since the left action of Γ and the right action of H commute, the action

of H induces a locally free action on the quotient M = Γ\G which defines a foliation

F . (Locally free means that the isotropy subgroups are discrete.)

The foliation F on M is developable. Here M̂ = G and the developing map is

just the locally trivial fibration D : M̂ = G −→ W . The pull-back of F by the normal

Γ-covering projection π : G −→ M is exactly the foliation F̂ .

3.4. Suspension of a group of diffeomorphisms

Let L and W be two manifolds, respectively of dimensions m and n. Suppose that

the fundamental group π1(L) of L is finitely generated. Let ρ : π1(L) −→ Diff(W ) be

a representation, where Diff(W ) is the diffeomorphism group of W . Denote by L̂ the

universal covering of L and F̂ the horizontal foliation on M̂ = L̂×W , i.e., the foliation

whose leaves are the subsets L̂ × {y}, y ∈ W . This foliation is invariant by all the

transformations Tγ : M̂ −→ M̂ defined by Tγ(x̂, y) = (γ · x̂, ρ(γ)(y)) where γ · x̂ is the

natural action of γ ∈ π1(L) on L̂; then F̂ induces a codimension n foliation Fρ on the

quotient manifold:

M = M̂/(x̂, y) ∼ (γ · x̂, ρ(γ)(y)).
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We say that Fρ is the suspension of the representation ρ : π1(L) −→ Diff(W ). The

leaves of Fρ are transverse to the fibres of the natural fibration induced by the projection

on the first factor L̂×W −→ L̂.

The geometric transverse structures of the foliation F are exactly the geometric

structures on the manifold W invariant under the action of Γ.

4. Cohomologies

4.1. Cohomology of a discrete group

Let Γ be a (countable) discrete group and V a vector space on which Γ acts by

automorphisms; this makes V a Γ-module. The action of γ ∈ Γ on v ∈ V is denoted

γ · v.

1. For each integer p ≥ 1, let Cp(Γ, V ) be the vector space of maps from Γp to

V ; an element of Cp(Γ, V ) is called a p-cochain on Γ with values in V . By convention

C0(Γ, V ) = V . Define the linear map d : Cp(Γ, V ) −→ Cp+1(Γ, V ) by:

(5)

dc(γ1, . . . , γp+1) = γ1 · c(γ2, . . . , γp+1)

+

p∑

i=1

(−1)ic(γ1, . . . , γi−1, γiγi+1, γi+2, . . . , γp+1)

+ (−1)p+1c(γ1, . . . , γp).

An element of the kernel Zp(Γ, V ) of d : Cp(Γ, V ) −→ Cp+1(Γ, V ) is called a cocycle and

an element of the image Bp(Γ, V ) of d : Cp−1(Γ, V ) −→ Cp(Γ, V ) is called a coboundary.

The operator d satisfies d2 = 0 and then Bp(Γ, V ) is a subspace of Zp(Γ, V ). The

quotients Hp(Γ, V ) = Zp(Γ, V )/Bp(Γ, V ) for p ∈ N are called the cohomology spaces

of Γ with values in the Γ-module V .

2. An element c of C0(Γ, V ) is just a vector in V and dc(γ) = γ ·c−c. So H0(Γ, V )

is the subspace V Γ of elements of V which are invariant under the action of Γ.

3. If Γ = Z and its action is generated by an automorphism γ of V , an easy

computation shows that:

(6) Hp(Γ, V ) =





V Γ if p = 0
V/〈v − γ · v〉 if p = 1
0 if p ≥ 2

where 〈v − γ · v〉 is the subspace of V generated by elements of the form v − γ · v

with v varying in V . If, for instance, V is finite dimensional and γ does not fix

any vector, the linear map v ∈ V 7−→ v − γ · v ∈ V is an isomorphism and then

H0(Γ, V ) = H1(Γ, V ) = 0.

4.2. Sheaf cohomology

Let E be a sheaf of vector spaces on M and U = {Ui}i∈I a locally finite open

cover of M . For any multi-index (i0, · · · , iq) in I, we denote Ui0···iq the intersection
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Ui0 ∩ · · · ∩ Uiq and Σq the set of multi-indices for which Ui0···iq 6= ∅. Let Cq(U , E)

be the set of all collections (fi0···iq)(i0,···,iq)∈Σq
where fi0···iq is an element of E(Ui0···iq )

(space of sections of E over the open set Ui0···iq ); it is a K-vector space. An element

f of Cq(U , E) is called q-cochain on U with values in E . Define the cobord operator

δ : Cq(U , E) −→ Cq+1(U , E) by:

(7) (δf)i0···iq+1
=

q+1∑

j=0

(−1)jfi0···̂ij ···iq+1

where fi0···̂ij ···iq+1
is the section fi0···̂ij ···iq+1

restricted to the open set Ui0···iq+1
. For

instance, for a 0-cochain f = (fi), the 1-cochain δf = (fij) is given by fij = fj − fi; if

q = 1 and f = (fij), then δf = (fijk) with fijk = fjk − fik + fij . One can verify that:

δ ◦ δ : Cq−1(U , E) −→ Cq(U , E) −→ Cq+1(U , E)

is zero. Then the kernel Zq(U , E) of δ : Cq(U , E) −→ Cq+1(U , E) contains the image

Bq(U , E) of δ : Cq−1(U , E) −→ Cq(U , E); the quotient:

Hq(U , E) = Zq(U , E)/Bq(U , E)

is the qth cohomology space of the cover U with coefficients in the sheaf E .

If U ′ = {U ′
j}j∈J is an open cover finer than U , that is, for j ∈ J , there exists

i ∈ I such that U ′
j ⊂ Ui, we have a restriction morphism ρq : Cq(U , E) −→ Cq+1(U ′, E)

which induces a morphism ρ∗q : Hq(U , E) −→ Hq(U ′, E). The inductive limit of the

system
{
ρ∗q : Hq(U , E) −→ Hq(U ′, E)

}
U ′≺U

is a vector space denoted Hq(M, E) and

called the qth cohomology space of M with coefficients in the sheaf E (since we work

on paracompact Hausdorff spaces).

We have the following properties.

1. H0(M, E) is the space E(M) of global sections of E .

2. Let M and M ′ be two manifolds, f : M −→ M ′ a continuous map, E a

sheaf on M and E ′ its direct image by f . Then, for any integer q ≥ 0, f induces a

morphism f∗ : Hq(M ′, E ′) −→ Hq(M, E). If M ′′ is an other manifold, g : M ′ −→ M ′′ a

continuous map and E ′′ the direct image of E ′ by g, then (g◦f)∗ = f∗◦g∗. Furthermore

if M = M ′ and f is the identity map, then f∗ is the identity of Hq(M, E).

3. We say that a sheaf E is fine if, for any open locally finite cover U = {Ui}

there are endomorphisms hi : E −→ E such that the support of hi is a subset of Ui and∑
i∈I hi is the identity of E . (Recall that the support of a morphism h : E −→ E is the

set supp(h) = {x ∈ M : h(Ex) 6= 0} where Ex is the fibre of E at x.) For instance, the

sheaf Ck of germs of functions of class Ck (k ∈ N ∪ {∞}) is fine.

We have the following assertion (see [God] for the proof): Suppose E is a fine

sheaf. Then Hq(M, E) = 0 for q ≥ 1.
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4.3. Spectral sequence of a covering

Let Γ be a countable discrete group and π : M̂ −→ M a normal Γ-covering. Let Ê

be a sheaf of vector spaces over M̂ on which Γ acts and E its direct image by π on M .

Let U = {Ui} be a locally finite open cover of M ; the pull-back Û = {Ûi} of U by

π is an open cover of M̂ . For each q ∈ N, Γ acts on the space Cq(Û , Ê) of q-cochains

on Û with values in Ê ; Cq(Û , Ê) is therefore a Γ-module. One can then consider the

cohomology Hp(Γ, Hq(M̂, Ê)). According to [Gro] page 204, this is the term Epq
2 of a

spectral sequence:

(8) Epq
2 = Hp(Γ, Hq(M̂ , Ê))

converging to H∗(M, E). A construction of this spectral sequence can also be found in

[Bro], Chapter VII, Sections 5 and 7.

If (M̂, Ê) is acyclic, that is Hq(M̂, Ê) = 0 for q ≥ 1, the spectral sequence Er

converges at the E2 term and then:

(9) Hp(M, E) = Hp(Γ, H0(M̂ , Ê)) = Hp(Γ, Ê(M̂))

where Ê(M̂) is the space of global sections of the sheaf Ê .

4.4. Foliated cohomologies

LetM be a connected differentiable manifold supporting a foliation F of dimension

m (and codimension n).

1. For any r ∈ N, we denote Λr(T ∗F) the bundle of exterior algebras of degree r

over TF (tangent bundle to F). Its sections are the foliated forms of degree r; they

form a vector space Ωr
F (M). We have an operator (exterior derivative along the leaves)

dF : Ωr
F (M) −→ Ωr+1

F (M) defined (as in the classical case) by the formula:

dFα(X1, · · · , Xr+1) =

r+1∑

i=1

(−1)i+1Xi · α(X1, · · · , X̂i, · · · , Xr+1)

+
∑

i<j

(−1)i+jα([Xi, Xj ], X1, · · · , X̂i, · · · , X̂j , · · · , Xr+1)

where X̂i means that the argument Xi is omitted. We easily verify that d2F = 0. So

we obtain a differential complex (called the de Rham foliated complex of F):

0 −→ Ω0
F (M)

dF−→ Ω1
F (M)

dF−→ · · ·
dF−→ Ωm−1

F (M)
dF−→ Ωm

F (M) −→ 0.

Let Zr
F (M) be the kernel of dF : Ωr

F (M) −→ Ωr+1
F (M) and Br

F (M) the image of

dF : Ωr−1
F (M) −→ Ωr

F (M). The quotient Hr
F (M) = Zr

F (M)/Br
F (M) is the rth vector

space of foliated cohomology of (M,F).
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Foliated cohomology was substantially used in the study of the parametric rigidity

of some Lie group actions. (See [MM] and [Asa] for an account on the subject).

2. Let τ : E −→ M be a F -foliated vector bundle. Then dF extends to the space

Ω∗
F (M,E) of foliated forms with values in E and gives rise to a differential complex:

(10) 0 −→ Ω0
F (M,E)

dF−→ Ω1
F (M,E)

dF−→ · · ·
dF−→ Ωm−1

F (M,E)
dF−→ Ωm

F (M,E) −→ 0

whose cohomology H∗
F (M,E) is called the foliated cohomology of the foliated manifold

(M,F) with values in E. If Eb is the sheaf of germs of basic sections of E and Ω̃r
F (E)

the sheaf of germs of foliated r-forms with values in E, we have a fine resolution:

(11) 0 −→ Eb →֒ Ω̃0
F (E)

dF−→ Ω̃1
F (E)

dF−→ · · ·
dF−→ Ω̃m−1

F (E)
dF−→ Ω̃m

F (E) −→ 0

first established by Vaisman in [Vai] Chapter 5 Section 2. Then:

H∗
F (M,E) = H∗(M, Eb).

3. If E is the trivial vector bundle of rank 1, Eb is the sheaf of germs of basic

functions and so Hr(M, Eb) = Hr
F (M) for r ∈ N.

4. As our main interest in this work is the study of infinitesimal deformations of

a developable foliation (M,F), our F -bundle E will now be the normal bundle V of F .

The following proposition will be an essential ingredient in the proof of Theorem

5.2 which is the main result of this paper.

4.5. Proposition. Suppose that the foliation F is a (locally trivial) fibration M
π

−→ W

with fibre L. If Hq(L) = 0 (for some q ≥ 1) then Hq
F (M,V) = 0.

Proof. Note that V is the pull-back by π of the tangent bundle TW of W . Then it is

trivial over each leaf.

Let {Ui}i∈I be a locally finite open cover of W trivializing both the fibration π

and the vector bundle TW . For each i ∈ I, we set Vi = π−1(Ui) ≃ Ui × L; then {Vi}

is an open cover of M and the vector bundle V is trivial over Vi. Let ρi be a partition

of unity associated with the cover {Ui}i∈I and let ρi = ρi ◦ π. Then ρi is a partition

of unity associated with the cover {Vi}i∈I ; in addition each of the functions ρi is basic

i.e. dFρi = 0.

Let α ∈ Ωq
F (M,V) be a foliated q-form with values in V such that dFα = 0. Denote

by αi its restriction to the open set Vi; αi is a foliated q-form on the foliated manifold

(Vi,F) with values in V and it satisfies dFαi = 0. As the fibration π : Vi −→ Ui and

the vector bundle V −→ Vi are trivial and Hq(L) = 0 (by hypothesis), there exists

βi ∈ Ωq−1
F (Vi,V) such that dFβi = αi. Define β ∈ Ωq−1

F (M,V) by β =
∑

i∈I ρiβi.

Then, taking into account the fact that dFρi = 0, we have:

dFβ = dF

(∑

i∈I

ρiβi

)
=
∑

i∈I

dF (ρiβi) =
∑

i∈I

ρi(dFβi) =
∑

i∈I

ρiαi = α.

10



Thus we have shown that the vector space Hq
F (M,V) is trivial. �

4.6. Integrable homotopy

This property is for foliated cohomology of a foliation what the ordinary homotopy

is for de Rham cohomology of a manifold.

Let (M,F) and (M ′,F ′) be two foliated manifolds. We equip M × R with the

foliation F whose leaves are L × R where L is a leaf of F . Let f, g : M −→ M ′ be

two differentiable maps. An integrable homotopy from f to g is a differentiable foliated

map H : (M × R,F) −→ (M ′,F ′) such that:

H(z, t) =

{
f(z) for t ≤ 0
g(z) for t ≥ 1.

We have the following assertions (see [Ek1]) established in the case of foliated

cohomology but easily generalized in the case where it is valued in the normal bundle.

1. If there exists an integrable homotopy from f to g then the induced morphisms

f∗, g∗ : H∗
F′ (M ′) −→ H∗

F (M) are the same.

2. Suppose that the two foliated manifolds (M,F) and (M ′,F ′) have the same

integrable homotopy type. Then their foliated cohomologies H∗
F (M) and H∗

F′ (M ′) are

isomorphic.

5. Infinitesimal deformations of developable foliations

In all this section, M will be a connected compact manifold of dimension d = m + n.

As usual, all the objects we will consider are supposed to be of class C∞.

5.1. Preliminaries

All that we are going to expose in this subsection is taken from the paper [Ham].

For any x ∈ M , we denote Gx(M,m) the Grassmannian of m-planes of TxM . We

obtain a locally trivial bundle G(M,m) −→ M whose typical fibre is the Grassmannian

G(d,m) of the vector space Rd. A C∞-field (or just a field) of m-planes on M is nothing

but a section of G(M,m) −→ M . Let τ be a field of m-planes and (τ1, · · · , τm) a basis

of local sections of τ . If X =
∑m

i=1 aiτi and Y =
∑m

j=1 bjτj are two local sections of τ ,

we have:

(12) [X,Y ] =

m∑

i,j=1

aibj [τi, τj ] +

m∑

i,j=1

{ai(τi · bj)τj − bj(τj · ai)τi} .

In the quotient V = TM/τ , the value of [X,Y ] at a point x ∈ M depends only on

the values of X and Y at this point and not on the values of their derivatives. This

gives rise to a 2-form Q(τ) : τ × τ −→ V whose value at Xx and Yx is the class in the

quotient Vx = TxM/τx of the vector [X,Y ]x.

The 2-form Q(τ) is an element of the space C∞(Λ2(G(TM,m)) of the C∞-sections

of the bundle Λ2(G(TM,m)) −→ G(TM,m) whose fibre over a m-plane τ of TM is the
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space of 2-skew-symmetric forms Λ2(τ, TM/τ). By Frobenius theorem, τ is integrable

if and only if the Q(τ) is identically zero. In this case, τ defines a dimension m foliation

F on M . The C∞-map Q : τ ∈ C∞(G(M,m)) 7−→ Q(τ) ∈ C∞(Λ2(G(TM,m)) plays a

fundamental role in the theory of foliations.

The space C∞(G(M,m)) of C∞-sections of the bundle G(M,m) equipped with its

natural C∞-topology is a Fréchet manifold [Ham]. The subset F(M,m) of foliations of

dimension m on M (“zero set of Q”) is closed; we equip it with the induced topology.

Let F be a foliation of dimension m, that is, F is an integrable field of m-planes

on M . For any diffeomorphism ϕ of M , the pull-back ϕ∗(F) of F by ϕ is a dimension

m foliation on M i.e. an element of G(M,m) such that its associated 2-form Q(F) is

identically 0. Then we have a C∞-map ΘF : ϕ ∈ Diff(M) 7−→ ϕ∗(F) ∈ C∞(G(M,m))

(with values in fact in F(M,m)) and a sequence:

(13) Diff(M)
ΘF−→ C∞(G(M,m))

Q
−→ C∞(Λ2(G(TM,m))

satisfying Q ◦ ΘF = 0. This sequence is called the non-linear deformation complex of

the foliation F . We say that F is C∞-stable if there exist an open neighborhood U

of F in C∞(G(M,m)) and an open neighborhood W of the identity in Diff(M) with

ΘF (W) ⊂ U and such that the complex:

(14) W
ΘF−→ U

Q
−→ C∞(Λ2(G(TM,m))

is exact. This means that any foliation F ′ of dimension m on M sufficiently close (in

the C∞-topology) to F is conjugate to F by a diffeomorphism ϕ of M close to the

identity i.e. ϕ∗(F ′) = F .

The study of the stability of F requires the linearization of the nonlinear complex

of its deformations. But this one is exactly the foliated de Rham complex (up to the

degree 2) with values in the normal bundle (cf. [Ham] for calculations):

(15) 0 −→ Ω0
F (M,V)

dF−→ Ω1
F (M,V)

dF−→ Ω2
F (M,V)...

An element of H1
F (M,V) (cohomology at degree 1 of the complex (15)) is called

an infinitesimal deformation of F . So in all the following sections we will focus our

attention mostly on the vector spaces H∗
F (M,V).

Now the foliation F we will consider on our manifold M will be developable. Let

π : M̂ −→ M = M̂/Γ be its normal Γ-covering and D : M̂ −→ W its developing map

whose fibres are the leaves L̂ of the pull-back F̂ = π∗(F).

Let V̂ = TM̂/T F̂ denote the normal bundle of F̂ . Since the group Γ acts on M̂

by diffeomorphisms preserving the foliation F̂ , it preserves the tangent bundle T F̂ and

thus acts on the normal bundle V̂: V̂ is both a F̂-foliated bundle and a Γ-bundle. Now

because the leaf space of F̂ is the manifold W , the action of Γ on V̂ induces one on the
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tangent bundle of W . Therefore the space C∞
b (V̂) of basic sections of V̂ is the space

X(W ) of vector fields on W and on which Γ acts.

Finally, our main result on foliated cohomology and infinitesimal deformations of

developable foliations is given by the following theorem.

5.2. Theorem. Let F be a developable foliation on a connected compact manifold M .

The notations are those just given before. We have the following assertions.

1. If H1(L̂) = 0, the space H1
F (M,V) is isomorphic to H1(Γ,X(W )).

2. If Hq(L̂) = 0 for all q ≥ 1, each Hq
F (M,V) is isomorphic to Hq(Γ,X(W )).

Proof. It is almost immediate since we have prepared in the preceding sections all the

material for this purpose.

Let Eb and Êb denote the sheaves of germs of basic sections respectively of the

bundles V and V̂. By 4.3. we have a spectral sequence (Er, dr) converging to H∗(M, Eb)

and whose E2 term is:

(16) Epq
2 = Hp(Γ, Hq(M̂, Êb)).

1. Since the foliation (M̂, F̂) is the fibration D : M̂ −→ W and H1(L̂) = 0 by

hypothesis, we get by applying Proposition 4.5. H1(M̂ , Êb) = 0 and then E01
2 = 0.

On the other hand H1(M, Eb) = E10
∞ ⊕ E01

∞ = E10
∞ , where Epq

∞ is the limit of the

spectral sequence. Now, for r ≥ 2, the differentials:

dr : E10
r −→ E1+r,−r+1

r and dr : E1−r,r−1
r −→ E10

r

are zero since the vector spaces E1+r,−r+1
r and E1−r,r−1

r are trivial; therefore:

E10
∞ = E10

2 = H1(Γ, H0(M̂, Êb)).

But H0(M̂, Êb) (space of global F̂-basic sections of Êb) is exactly the space X(W ) of

global vector fields on W . Finaly we have:

(17) H1
F (M,V) = H1(M, Eb) = H1(Γ,X(W )).

2. Since Hq(L̂) = 0 for q ≥ 1, we get from Proposition 4.5. Hq(M̂ , Êb) = 0 for

q ≥ 1. Then (like in Subsection 4.3. Formula (9)) the spectral sequence converges at

the E2 term and then:

Hp(M, Eb) = Ep0
2 = Hp(Γ,X(W )).

This ends the proof of the theorem �

Equality (17) reduces the computation of the space of infinitesimal deformations

H1
F (M,V) of the foliation (M,F) to that of the first cohomology space of the discrete

group Γ with values in the Γ-module X(W ). We will see explicit examples in section 6.
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Using this result, Stephane Geudens has constructed recently in [Geu] a class of

infinitesimally rigid non-Hausdorff Riemannian foliations. The only ones known so far

are Riemannian with compact leaves and whose first cohomology space is trivial.

6. Examples and explicit computations

Some of them are well known and have already been studied under a continuous aspect

(using vector fields and differential forms). We take them back by applying the different

methods of cohomology of discrete groups we have just exposed.

6.1. Example 1

Let M be the torus Tm+n = Rm+n/Zm+n where m and n are positive integers.

We can view it as the product Tm × Tn and then as the quotient of M̂ = Rm × Tn by

the free and proper action of the group Γ = Zm:

(18) (k, (x, y)) ∈ Zm × (Rm × Tn) 7−→ (x+ k, y) ∈ Rm × Tn.

The canonical projection π : M̂ −→ M is a Γ-covering. Denote by (e1, · · · , em) the

canonical basis of Rm, that is ei (for i = 1, · · · ,m) has its ith component equal to 1

and all the others equal to 0. This basis is also a system of generators of Γ.

Let ρ : Γ −→ Diff(Tn) be the representation which associates to each generator ei
the translation on Tn by a vector αi = (α1

i , · · · , α
n
i ). The suspension of ρ gives rise to

a foliation F on M whose associated lifted foliation F̂ to M̂ is just the one defined by

the second projection M̂ = Rm × Tn −→ Tn = W . The action of Γ on W is given by

the representation ρ.

The normal bundle V is identified to the tangent bundle of W = Tn which is trivial

as a foliated bundle: any linear vector field Y on W is basic. So V is trivial as foliated

vector bundle and also as a Γ-bundle. So:

(19) H1
F (M,V) = H1(Γ, C∞(Tn))⊗ Rn.

Then to determine H1
F (M,V) it is sufficient to determine the space H1(Γ, C∞(Tn))

which is the ordinary foliated cohomology H1
F (M) of the manifold (M,F).

Let us compute the vector space H1(Γ, C∞(Tn)). We shall do it by induction on

the integer m. Suppose that m = 1, that is, Γ is reduced to its first factor Γ1 = Z.

Then by formulas (6), Hr(Γ1, C
∞(Tn)) = 0 for r ≥ 2, H0(Γ1, C

∞(Tn)) is the subspace

of C∞(Tn)) consisting of functions invariant by τ1 and H1(Γ, C∞(Tn)) is the cokernel

of the operator:

δ : f ∈ C∞(Tn) 7−→ (f − f ◦ τ1) ∈ C∞(Tn)

where τ1 is the translation by the vector α1 = (α1
1, · · · , α

n
1 ). Then we have to solve the

cohomological equation:

(20) f(y)− f(y + α1) = g(y) for all y ∈ Tn
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where g is given in C∞(Tn).

One can find the resolution of this equation in several works. We will quickly

resume the one given in [EH] and focus on the case where the components of the vector

α1 = (α1
1, · · · , α

n
1 ) are linearly independent over Q. We denote 〈 , 〉 the usual scalar

product in Rn.

i) We say that α1 is Diophantine if there exist real numbers C > 0 and η > 0

such that |〈m, α1〉| ≥
C

|m|η for all m ∈ Zn different from 0.

ii) We say that α1 is Liouville if there exists a real number C > 0 such that for

any η > 0, there exists mη ∈ Zn satisfying the inequality |〈mη, α1〉| ≤
C

|mη |
η .

Any vector α1 ∈ Rn whose components α1
1, · · · , α

n
1 are algebraic numbers and

linearly independent over Q is Diophantine (see [EH] for the proof).

Let L : C∞(Tn) −→ C be the functional defined by L(g) =
∫
Tn g(x)dx. Its kernel

N is a closed codimension one subspace of C∞(Tn). We have the following assertions:

iii) H0(Γ, C∞(Tn)) consists of constant functions: it is isomorphic to R.

iv) If the vector α1 is Diophantine, then the image of the operator δ is equal to

N . In this case, H1(Γ, C∞(Tn)) is a Hausdorff topological vector space of dimension

1 generated by the constant function equal to 1.

v) If the vector α1 is Liouville then H1(Γ, C∞(Tn)) is a non Hausdorff infinite

dimensional topological vector space.

Suppose now that Γ = Γ1 × Γ2 where Γ1 and Γ2 are copies of Z. By Künneth

formula (see [Bro] page 120), the space H1(Γ, C∞(Tn)) is:

H0(Γ1, C
∞(Tn))⊗H1(Γ2, C

∞(Tn))⊕H1(Γ1, C
∞(Tn))⊗H0(Γ2, C

∞(Tn)).

But H0(Γ1, C
∞(Tn)) and H0(Γ2, C

∞(Tn)) are isomorphic to R; then:

H1(Γ, C∞(Tn)) = H1(Γ1, C
∞(Tn))⊕H1(Γ2, C

∞(Tn)).

So H1(Γ, C∞(Tn)) is Hausdorff and isomorphic to R2 if both the vectors α1 and α2

are Diophantine and it is a non Hausdorff infinite dimensional topological vector space

if one of these vector is Liouville.

A repeated application of Künneth’s formula gives the following result for the case

where the group Γ is Zm:

vi) If all the vectors α1, · · · , αm are Diophantine, H1(Γ, C∞(Tn)) is Hausdorff and

isomorphic to Rm. Then:

(21) H1
F (M,V) = H1(Γ, C∞(Tn))⊗Rn = Rm ⊗ Rn.

In fact one can easily prove that:

(22) Hq(Γ, C∞(Tn)) = RCq
m

15



for q = 0, 1, · · · ,m where Cq
m = m!

q!(m−q)! .

vii) If at least one of the vectors α1, · · · , αm is Liouville, H1(Γ, C∞(Tn)) is a non

Hausdorff infinite dimensional topological vector space. Therefore it is the same for the

vector space H1
F (M,V).

6.2. Example 2

The construction of this example is given in [EN] where only the vector space

H1
F (M,V) was computed. We will take it back and calculate explicitly all spaces of its

foliated cohomologies.

1. Let A be a square matrix with integer coefficients and determinant 1. We

suppose that A is diagonalizable on the field of the real numbers and having all its

eigenvalues µ1, . . . , µm, λ1, . . . , λn such that: 0 < µ1 . . . , µm < 1 < λ1, . . . , λn. Because

the product of these positive numbers is 1, the integers m and n are all such that m ≥ 1

and n ≥ 1.

We can think of A as a diffeomorphism of Tm+n. Let u1, · · · , um, v1, · · · , vn be

the eigenvectors corresponding respectively to the eigenvalues µ1, . . . , µm, λ1, . . . , λn

and X1, . . . , Xm, Y1, . . . , Yn be linear vector fields on Tm+n whose directions are given

respectively by u1, · · · , um, v1, · · · , vn. We have:

(23) A∗Xi = µiXi, A∗Yj = λjYj for i = 1, . . . ,m and j = 1, . . . , n.

2. Denote by F0 the foliation on Tm+n defined by the vector fields X1, . . . , Xm.

The product of F0 by R gives a codimension n foliation F̂ on M̂ = Tm+n × R which

is invariant by the diffeomorphism φ of Tm+n × R sending (z, t) to (A(z), t+ 1). So it

induces a codimension n foliation F on the quotient manifold Tm+n+1
A = Tm+n×R/φ.

Notice that Tm+n+1
A is a flat bundle over the circle S1 with fibre Tm+n. In fact the

manifold M = Tm+n+1
A is the homogeneous space G/Γ where G is the semi-direct

product Rm+n ⋊ R given by the action:

(t, z) ∈ R× Rm+n 7−→ Atz ∈ Rm+n

and Γ is the discrete subgroup {(k, s) ∈ G | k ∈ Zm+n, s ∈ Z}. The subgroup:

H =

{(
m∑

i=1

aiui, b

)
∈ G | a1, . . . , am, b ∈ R

}

is isomorphic to the semi-direct product Rm⋊R∗
+ where R∗

+ acts on Rm by homothety

in each eigendirection. The action of H on Tm+n+1
A induced by this identification is a

locally free action whose orbits define the foliation F .

3. From now on we shall assume that the matrix A fulfills the following condition.

(C) The basis of Rm+n given by the eigenvectors u1, . . . , um, v1, . . . , vn is such that the

coordinates w1, . . . , wm+n of any of its vectors w are linearly independent over Q.
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Under this assumption any of the vectors u1, . . . , um fulfills the Diophantine con-

dition (cf. [Sch]) we gave in the Example 5.1.

4. It is well known that if the eigenvalues of A are all different then condition (C)

is fulfilled if and only if the characteristic polynomial χA(t) of A is irreducible over Q.

The following example shows the existence of matrices fulfilling the above properties.

A =




1 1 1 . . . 1
1 2 0 . . . 0
1 0 3 . . . 0
...

...
...

. . .
...

1 0 0 . . . dm+n




where the diagonal elements d1, . . . , dm+n of A are inductively defined by d1 = 1 and

dℓ+1 = 1 + d1 · d2 · . . . · dℓ for ℓ = 1, . . . ,m+ n− 1. In this case the matrix A has

one eigenvalue ν1 in the interval ]0, 1[ and exactly one eigenvalue ν2, . . . , νm+n in each

of the intervals ]d2, d3[, ]d3, d4[, . . ., ]dm+n,∞[. In particular all the eigenvalues are

different and there is only one eigenvalue smaller than 1. This implies that χA(t) is

irreducible over Z and thus over Q because of the Gauss Lemma. Therefore the matrix

A fulfills condition (C).

5. To compute the two cohomologies H∗
F (M) and H∗

F (M,V) we shall use the

spectral sequence (8) of the foliated Z-covering π : (M̂, F̂) −→ (M,F). (Recall that

Z acts on M̂ = Tm+n × R by its generator φ(z, t) = (A(z), t + 1).) We will do the

calculation just for H∗
F (M,V), it is practically the same for H∗

F (M). The spectral

sequence Er in our situation has its term E2:

(24) Epq
2 = Hp(Z, Hq

F̂
(M̂ , V̂))

and converges to the cohomology H∗
F (M,V). (Here V̂ denotes the normal bundle of

the foliation F̂ .) Since the retraction of M̂ = Tm+n × R along the second factor is

an integrable homotopy from the foliated manifold (M̂, F̂) to the foliated manifold

(Tm+n,F0) (see point 2 of subection 4.5), we have:

Hq

F̂
(M̂, V̂) = Hq

F0
(Tm+n,V0)

where V0 is the normal bundle of the foliation F0. Since all the vectors u1, · · · , um are

diophantine:

(25) Hq
F0

(Tm+n,V0) = RCq
m ⊗Rn.

6. Now we will describe the action of the diffeomorphism φ of M̂ on these two

spaces. For this let us take again the vector fields X1, · · · , Xm, Y1, · · · , Yn satisfying the

relations (23). They constitute a basis of the module X(Tm+n) of tangent vector fields
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to Tm+n; the first ones X1, · · · , Xm are those who are tangent to the foliation F0. Let

θ1, · · · , θm be the 1-forms (with constant coefficients) such that, for i, k = 1, · · · ,m:

θi(Xk) = δki and θi(Yj) = 0 for j = 1, · · · , n

where δki is the Kronecker symbol. The family {θi1 ∧· · ·∧θiq : 1 ≤ i1 < · · · < iq ≤ m} is

a basis of Hq
F0

(Tm+n) for q ≥ 1; H0
F0

(Tm+n) = R is generated by the constant function

equal to 1. Then one can take:

{θi1 ∧ · · · ∧ θiq ⊗ Yj : 1 ≤ i1 < · · · < iq ≤ m and j = 1, · · · , n}

as a basis of Hq
F0

(Tm+n,V0). The action of the matrix A on this space is given on the

elements of this basis by:

A∗(θi1 ∧ · · · ∧ θiq ⊗ Yj) = (A−1)∗(θi1) ∧ · · · ∧ (A−1)∗(θiq )⊗A∗(Yj)

=
(
µ−1
i1

· · ·µ−1
iq

) (
θi1 ∧ · · · ∧ θiq

)
⊗ (λjYj)

=
(
µi1 · · ·µiq

)−1
λj

(
θi1 ∧ · · · ∧ θiq ⊗ Yj

)
.

Since 0 < µ1, · · · , µm < 1 and 1 < λ1, · · · , λn, all the products (µi1 · · ·µiq)
−1λj are

greater than 1; then no one of the elements θi1 ∧ · · · ∧ θiq ⊗ vj is invariant under the

action of A. Therefore, for any q ∈ {0, 1, · · · ,m}:

E0q
2 = H0(Z, Hq

F0
(Tm+n,V0)) = 0.

7. Recall that if V is a vector space on which Z acts freely Hp(Z, V ) = 0 for p ≥ 2.

Applying this to our situation, we get, for p ≥ 2:

Epq
2 = Hp(Z, Hq

F0
(Tm+n,V0)) = 0.

Then the second differential d2 : Epq
2 −→ Ep+2,q−1

2 is zero. This implies the convergence

of the spectral sequence at the E2 term, and then Hr
F (M,V) = E0r

2 ⊕ E1,r−1
2 . But

E0r
2 = 0, so:

(26) Hr
F (M,V) = E1,r−1

2 = H1(Z, Hr−1
F0

(Tm+n,V0)) = H1(Z,Rd ⊗Rn)

where d = Cr−1
m = n!

(r−1)!(m−r+1)! . Because the action of Z is without fixed vector on

the space Rd ⊗Rn (which is finite dimensional), H1(Z,Rd ⊗Rn) is trivial and then so

is Hr
F (M,V) for any r = 0, 1, · · · ,m.

8. We just have showed that Hr
F (M,V) = 0 for any r = 0, 1, · · · ,m, in particular

H1
F (M,V) = 0. The foliation F is then infinitesimally stable. This result is not new:

the C∞-stability (which is stronger) was already proved in [EN].
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9. In a similar way one can prove that the two spaces H0
F (M) and H1

F (M) are

equal to R and that Hr
F (M) = 0 for r ≥ 2.

6.3. Example 3

LetM be a compact manifold equipped with a Lie G-foliation F . Let π : M̂ −→ M

be the corresponding Γ-covering and D : M̂ −→ G its developing map. As it was

mentioned in the subsection 3.3, there exists an injective representation ρ : Γ →֒ G

such that, for any γ ∈ Γ, the following diagram is commutative:

M̂
γ

−→ M̂
D ↓ ↓ D

G
ρ(γ)
−→ G.

As a subgroup of G, Γ acts on it by left translations. If H1(L̂) = 0, by Theorem

5.2, the space H1
F (M,V) of infinitesimal deformations of F is identified to the space

H1(Γ,X(G)). But X(G) = C∞(G) ⊗ G where G is the Lie algebra of the group G.

Because the action of Γ on G is trivial, we immediately have:

(27) H1
F (M,V) = H1(Γ, C∞(G))⊗ G

where the action of Γ on G is by left translations and by the induced usual one on the

Fréchet space C∞(G).

The following problem is of interest independently of that which it could have in

deformation theory of Lie foliations.

Problem. Let G be a connected Lie group and Γ a countable subgroup. Compute

the cohomology H∗(Γ, C∞(G)).

For Γ finite or discrete, we have (see [Ek2]) Hr(Γ, C∞(G)) = 0 for r ≥ 1. The

case Γ ≃ Z was studied in [EH]. The one where G is a torus and Γ ≃ Zm is more or

less our example 6.1.

When Γ is infinite and not closed, the quotient Q = G/Γ is a Q-manifold in the

sense of [Bar]. Then one can ask: What relationship is there between H∗(Γ, C∞(G))

and the cohomology of Q-manifolds defined in [Bar]?

In the general case of a transversely homogeneous G/H-foliation F , with the

hypothesis H1(L̂) = 0, the vector space H1
F (M,V) is H1(Γ,X(G/H)) where the action

of Γ on G/H is induced by its left action on G.
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20



[Gro] Grothendieck, A. Sur quelques points d’algèbre homologique. Tohoku Math. J.
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[MM] Matsumoto, S. & Mitsumatsu, Y. Leafwise cohomology and rigidity of certain Lie

group actions. Ergod. Th. & Dynam. Sys. 23, (2003), 1839-1866.

[Sch] Schmidt, W. M. Diophantine Approximation. Lecture Notes in Math., Vol. 785,

Springer-Verlag (1980).

[Vai] Vaisman, I. Cohomology and Differential Forms. M. Dekker, (1973).
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Dmaths-Céramaths

F-59313 Valenciennes Cedex 9, France

aziz.elkacimi@uphf.fr

http://perso.numericable.fr/azizelkacimi/

Acknowledgments

The two referees who reviewed the first version of this article made relevant and constructive

comments that allowed me to correct certain passages and make the content clearer. I thank them

warmly.

This paper has been ”vegetating” on my homepage for more than four years. Recently, David

Fisher drew my attention to the fact that its content would probably be of interest to those working

on this topic and encouraged me to submit it to a journal. I thank him very much for that!

21


